AutoStatsQ: A toolbox for automated quality control of large seismic networks and its application to AlpArray \& Swath-D

G. Petersen ${ }^{1,2}$, S. Cesca ${ }^{1}$, M. Kriegerowski², T. Plenefisch ${ }^{3}$
${ }^{1}$ GFZ Potsdam, ${ }^{2}$ Universität Potsdam, ${ }^{3}$ BGR Hannover

Motivation: MT inversion for $\mathrm{M}<4$

AlpArray seismic network

Seismicity 1970-2017 (gCMT, geofon, INGV)

AutoStatsQ

GFZ

Input: Station file \& Time range

- Teleseismic catalog search \& event selection
- Data and metadata download
- Preprocessing: restitution, filtering, downsampling
- Computation of synthetic data

AutoStatsQ: Gain error test

GFZ

Computation of median ratios of maximum P phase amplitudes with respect to one reference station:

$$
\operatorname{median}\left(\frac{A_{i, j}}{A_{r e f, j}}\right) \begin{aligned}
& i \text { i: Station } \\
& \text { ref: reference station } \\
& j: \text { Event }
\end{aligned}
$$

```
!autostatsq.config.GainfactorsConfig
gain_factor_method:
- reference_nsl
- [ZS, D017]
fband:
    corner_hp: 0.01
    corner_lp: 0.2
    order: 4
wdw_st_arr: 5
wdw_sp_arr: 60
```


Perm. AlpArray stations, Z component reference Station: GE.MATE

AutoStatsQ: Gain error test - Results

Permanent AlpArray stations

- 3 Stations with errors of several magnitudes: SK.MODS, SK.ZST, RD.MFF
- 3 \% amplitude ratio > 10 or < 0.1

Temporary AlpArray stations

- No station with significantly wrong amplification factors
- $2 / 211$ station with amplitude ratio > 10 or < 0.1: CR.SMRN, Z3.A112A

Swath-D

- 1/69 malfunctioning station detected: D046

Median amplitude ratios of ZS stations

AutoStatsQ: Gain error test - Results

Median P amplitude ratios after removal of outliers - site-effect study (?):

Perm.

AutoStatsQ: Gain error test - Results

Instrument corner frequencies from metadata of permanent and temporary AlpArray stations

$$
\begin{aligned}
& \square \\
& 0: 30 \mathrm{~s} \\
& 1: 40 \mathrm{~s} \\
& \square \\
& 2: 60 \mathrm{~s} \\
& 3: 78 \mathrm{~s} \\
& \square \\
& 4: 90 \mathrm{~s} \\
& \square \\
& 5: 120 \mathrm{~s} \\
& \text { 6: } 240 \mathrm{~s} \\
& 7 \\
& 7: 360 \mathrm{~s} \\
& (8: 999 \mathrm{~s})
\end{aligned}
$$

AutoStatsQ: Orientation error test

GFZ

Helmholtz-Zentrum
POTSDAM

- Rayleigh wave polarization: 90° phase shift between radial and vertical component
\rightarrow Rotate Hilbert-transformed, theo. R comp. in 1° steps, search for max. cross-correlation
- Stable detection of misorientations $>15^{\circ}$
- Detection of wrong polarities of horizontal (or vertical) components

Misorientation of perm. AlpArray stations

Correction angle vs. cross-correlation coefficient, station GR.BFO, 5 example events.

AutoStatsQ: Orientation error test - Results

Sensor orientations:

- 3 Stations ~ 25° : D001, D078, D116
- 2 Stations with wrong
polarities: Z3.A263A, polarities: Z3.A263A, Z3.A300A

Temporary AlpArray stations:

- 95% orientation within 20°

AutoStatsQ: Orientation error test - Results
Helmholtz-Zentrum
POTSDAM

Examples of wrong polarities (horizontal components)

2018-01-23 09:31:42, $\mathrm{M}_{\mathrm{w}} 7.9$, Gulf of Alaska S phase on IV.SARZ and nearby stations

2018-02-16 23:39:46, M_{w} 7.2. Mexico
S phase on ZS.D125 and nearby stations

AutoStatsQ: PSDs

- Comparison of synthetic and real PSDs
- Frequency ranges in which PSDs agree well
- Check of instrument lower corner frequencies indicated in metadata

Example for synth. and real PSDs, station GR.BFO, 20 events

AutoStatsQ: PSDs - Results

Results depend on task or chosen threshold defining the usable frequency ranges with high agreement of synth. and real data

Permanent and temporary AlpArray stations:

- (Same) stations with large gain errors detected
- Different instrument corner frequencies can be verified
- Frequency ranges for MT inversions

Swath-D:

- D046 conspicuous
- 100 s corner frequency confirmed

Synth. and real PSDs, station ZS.D046

Conclusions \& Outlook

GF Z
\rightarrow AutoStatsQ toolbox \leftarrow

- Gain factors - station-to-station
- Reliable detection of large gain factor errors
- TO DO: Check reliability of provided corrections \& site-effect studies
- Orientation analysis - R-to-Z-component
- Stable results for polarity switches and misorientations > 15°
- PSDs - synth-to-real
- Instrument corner frequencies can be identified
- Frequency ranges for e.g. MT inversions, but needs careful parameter selection

Conclusions \& Outlook

GFZ
\rightarrow AutoStatsQ toolbox \leftarrow

- Gain factors - station-to-station
- Detection of large gain factor errors reliable
- TO DO: Check reliability of provided corrections \& site-effect studies
- Orientation analysis - R-to-Z-component
- Stable results for polarity switches and misorientations > 15°
- PSDs - synth-to-real
- Instrument corner frequencies can be identified
- Frequency ranges for e.g. MT inversions, but needs careful parameter selection
\rightarrow Preliminary results: gesap@gfz-potsdam.de
\rightarrow AutoStatsQ: https://github.com/gesape/AutoStatsQ

Helmholtz-Zentrum
POTSDAM

Thanks for your attention!

